
Benchmarking Ray Tracing for Realistic Light

Transport Algorithms

Matthias Raab∗ Leonhard Grünschloß† Johannes Hanika‡

Manuel Finckh§ Alexander Keller¶

December 11, 2007

1 Introduction

Physically based light transport simulations generally rely on a fast implemen-
tation of the ray shooting function h(x, ω) and a fast visibility test V (x ↔ y).
Those functions directly appear in the transport equations, or reformulations
thereof [Vea97], and have to be evaluated very often (they usually make up
more than 60% of the total rendering time). Typically the performance of com-
plex surface scattering models is critical as well, their implementations differ
widely and cannot easily be compared. In contrast, the functions h and V are
universally applicable.

Ray tracing is the natural solution to compute h and V , as those func-
tions actually are what defines ray tracing, and can only be handled insuffi-
ciently by other techniques like e.g. rasterization. However, many ray tracing
researchers currently focus on rasterization-like techniques, namely accelerating
special cases using shafts or ray bundles. While high frame rates for trivially
shaded primary rays can be achieved, there is no benefit for a physical simula-
tion that does not fit into the camera-to-scene scenario. Thus, from a physical
simulator’s view most recent research [WMG+07] in the quite active field of
ray tracing can be considered irrelevant for their purpose. That is because the
special cases mentioned only account for a negligible fraction of rays usually
shot. In addition, the coherence often exploited by these special-case algorithms
cannot be provided for physically based algorithms.

We therefore present a framework for benchmarking ray tracing kernels in
the context of a realistic light simulation application. By a kernel we mean the
functional program unit that provides implementations of h and V , typically
using a hierarchical data structure.
∗iovis@gmx.de
†leonhard.gruenschloss@googlemail.com
‡hanatos@gmail.com
§manuel@funkyfinckh.de
¶alex@mental.com

1

2 Related Work

According to our knowledge there exists no previous framework for comparing
ray tracing kernels in the context of realistic light transport. However, there has
been some related work:

• Smits’ global illumination test scenes [SJ00]: A collection of scenes con-
structed to show some of the difficulties encountered in global illumination
simulation.

• Ward’s MGF scene repository (http://radsite.lbl.gov/mgf/): Scenes
with material properties suitable for physically-based rendering.

• RenderPark: a test-bed system for global illumination (http://www.cs.
kuleuven.ac.be/~graphics/RENDERPARK/): Includes source code and is
designed to compare different algorithms for global illumination simula-
tion. However, it does not compare different ray tracing kernels.

In contrast bwfirt has been designed to support multiple ray tracing kernels:
you can plug in your own kernel with small effort. Afterwards you can use it to
collect some statistics and generate plots for intuitive performance evaluation.

3 Requirements for Realistic Image Synthesis

Realistic light transport algorithms based on (quasi-)Monte Carlo integration,
such as Bidirectional Path Tracing or Metropolis Light Transport [Vea97] usu-
ally feature a wild mix of incoherent rays to be shot, to both find surface in-
tersection points and to test visibility. Ray tracing kernels that are used in
this context should therefore be able to handle arbitrary rays in any order and
provide

• a fast implementation of the ray shooting function h(x, ω) for finding the
next surface intersection point in the scene surface S for a ray starting at
x in direction ω, i.e.

h(x, ω) := argmin
x′∈{x+tω: t∈R+}∩S

‖x′ − x‖,

• and a fast implementation of the visibility test V (x ↔ y) which is 1 if x
and y are mutually visible, i.e.

V (x↔ y) :=

{
1, if ‖h(x,−→xy)− x‖ ≥ ‖y − x‖,
0, otherwise.

An important aspect in realistic light transport simulation is the numeri-
cal robustness of the underlying ray tracing implementation. The geometry is
usually provided in single precision floating point representation and due to
inaccuracies of many operations in this number system, great care has to be
taken to avoid a large error even in the average intensity of a synthesized image.
We want to emphasize that numerical precision with regard to ray tracing goes
beyond avoiding cracks along triangles.

Additionally, for complex simulation problems the memory footprint plays an
important role, as performance may suffer severely from swapping from memory
to the hard disk.

2

http://radsite.lbl.gov/mgf/
http://www.cs.kuleuven.ac.be/~graphics/RENDERPARK/
http://www.cs.kuleuven.ac.be/~graphics/RENDERPARK/

4 bwfirt - A Simple Ray Tracing Benchmark

In order to account for the requirements above, we created a minimal benchmark
framework, mainly cut from an existing renderer. To keep things as simple as
possible we only implemented path tracing with next event estimation, e.g.
explicit direct light estimation. However, even this rather minimal algorithm
provides a realistic mixture of ray shooting and visibility tests. Furthermore,
this algorithm generates a rather incoherent distribution of rays through all the
visible parts of the scene, which is exactly what we desire for our benchmarking
purposes.

If bwfirt is compiled with OpenMP support, it uses all available processor
cores for rendering per default, but you can still specify a specific number of
threads to use via the --threads option. While it may seem odd to include mul-
tithreading in a benchmark for an easily parallelizable problem like ray tracing
we still included it to allow for testing the thread-safety of your code. Addi-
tionally, you can improve your results by parallelizing the construction of your
acceleration structure, which usually is far from trivial.

The benchmark provides a python script that automatically generates a re-
port containing graphs, images, compiler, and system information for all avail-
able kernels in form of the bench.pdf document. Furthermore, it produces text
files that contain the information for each individual run of bwfirt.

As most scene descriptions are given in triangles and, more important, the
major amount of research in the ray tracing community is spent on triangles,
our benchmark currently does only support triangular geometry. New scenes
can easily be integrated by a very basic scene file description format: Given a
file containing the raw triangles (number of triangles · 9 · float) some triangles
have to be specified as light sources. This is done in a text file, which might look
like:

triangles conference.ra2
lights 1 929908 929911 100.0

This is the file for the conference room from Ward’s MGF file repository. There
is one light source consisting of triangles 929908 up to 929911, with a radiant
exitance set to 100.0. The triangle indices may be picked in interactive mode
using any mouse button.

Providing cameras is simple and can be achieved by the means of another
text file, for the conference room a suitable pinhole camera is:

type pinhole
position 8.16643 -56.2558 11.4971
direction 0.915894 0.400479 -0.0274723
up 0.0102422 0.0451014 0.99893
depth 1.37374
filmSizeY 1
sensorResponse 1
referenceAverageIntensity (0.857282 0.857282 0.857282)

3

When running in interactive mode a default camera is loaded. It can be used
for navigating through the scene (similar to ego-shooters with the left mouse
button pressed), in batch mode a camera file has to be specified. The camera
file can also be dumped during interactive mode by pressing the key ‘c’.

Another thing worth noting is the last line, containing the average intensity
of a reference image which has been computed with 100,000 samples per pixel.
This number has to be calculated before the benchmark and manually filled in
here to obtain correct error estimates for the numerical comparison graph. If
the line is not present, an average intensity of (0, 0, 0) is assumed. Consequently,
the numerical comparison graph then displays the squared length of the average
image intensity vector.

The full C++ source code, including a set of standard test scenes, can be
downloaded from http://bwfirt.sf.net. Besides some included utilities such
as a BSD licensed C++ implementation of the Mersenne Twister [MN98] pseudo
random generator, the whole benchmark suite is licensed under the GNU Gen-
eral Public License version 3, but feel free to integrate your proprietary kernels
as long as you only want to redistribute the benchmark results.

4.1 Implementing the Ray Tracing Interface

Basically, you have to implement only three functions in order to include your
own kernel. You can use the templates located under src/kernel/yourkernel
to provide:

• RTKernel::kernelInitialize()

This is the method called once before rendering. You should use it to
initialize your own data and build your acceleration structure(s) (if you
do not use an on-demand construction scheme).

• RTKernel::kernelIntersectGeometry()

Here you can implement your ray shooting function h that returns the
nearest intersection found.

• RTKernel::kernelVisibility()

You can put an optimized visibility function V here. If you do not override
this method, it is just a frontend to your ray shooting function h.

Handling Surface Offsets. You should not use any custom ε to avoid self-
intersections in order to keep different ray tracing implementations comparable
(especially with respect to average image intensity). The rendering algorithm
guarantees that ray starting points are offset by RTKernel::NORMAL OFFSET
times the surface normal. Points on the light source to compute visibility are
offset by the same constant if the light source has a geometric representation.

We are perfectly aware that the normal offset by ε “solution” to the self
intersection problem is nothing more than a horrible hack and better solutions
[Wäc07] do exist. For benchmarking purposes, however, our first goal is to keep
different kernels comparable. To achieve this, a constant epsilon is the easiest
approach to generate the same behavior for all kernels, sacrificing precision.

4

http://bwfirt.sf.net

4.2 Memory Allocation

In addition to speed, memory requirements are critical for light transport simula-
tions, since even common scenes can consist of hundreds of megabytes of triangle
data and the corresponding acceleration structures of ray tracing algorithms can
easily exceed the memory available on your system. In order to account for the
memory allocation we provided custom allocators in src/kernel/RTKernel.h
that keep count of memory usage. Just use them instead of malloc(), realloc(),
and free(). Note, however, that they contain critical sections for OpenMP par-
allelization.

• RTKernel::kernel_malloc()

Use this function to allocate all of your memory, an optional alignment
may be given.

• RTKernel::kernel_realloc()

Use this function to release parts of the previously allocated memory or if
more memory is required.

• RTKernel::kernel_free()

This function releases memory allocated with kernel malloc() and de-
creases the memory counter.

4.3 Compiling and Running bwfirt

First, please make sure that your system has the following utilities and libraries
installed:

• python-matplotlib

• scons

• epstopdf

• optionally SDL, if you want to build the interactive frontend

The benchmark uses scons as a build system, a Python-based tool corresponding
to autotools and make. Some very basic tests for systems and compilers are
included but you can, of course, edit the file SConstruct according to your
platform. For a standard build, just issue scons in the source directory. There
are very few build options:

debug Set to 1 for a debug build.

cxx Specify the compiler to use.

dvorak Use aoe instead of asd for movement in interactive mode.

frontend Set to 0 for command line only renderer.

Example: scons cxx=g++-4.3 dvorak=1

To run the benchmark, simply change to the bench directory and issue python
./bench.py. You may want to customize the scenes and kernels used. This can
be done by editing the lists found at the beginning of the file bench.py.

5

4.4 Some Results and Observations

We ran some tests using a broad range of ray tracing kernels written at Ulm
University, featuring kd-trees, bounding volume, and bounding interval hierar-
chies.

(a) Rendering by bwfirt at 100
passes

funky-

bih

funky-

bvh

funky-

kd

holger-
qbvh

jo-

kd

leo-
bvh

qbvh rt-
core

0

10

20

30

40

50

60

70

s
3
.8

0
0
e
+

0
1

3
.7

0
0
e
+

0
1

4
.6

0
0
e
+

0
1

2
.9

0
0
e
+

0
1

6
.1

0
0
e
+

0
1

3
.3

0
0
e
+

0
1

3
.2

0
0
e
+

0
1

4
.9

0
0
e
+

0
1

Total running time

(b) Total runnning time

Figure 1: bwfirt’s output for the conference room and running time for several
kernels on an Intel Core 2 Duo.

The two kernels funky-kd and simple-bvh are included in the bwfirt source
code package.

• simple-bvh: A simple implementation of a very basic bounding volume
hierarchy, featuring bounding box and triangle intersection tests in dou-
ble precision to provide a higher numerical precision for reliable average
intensity computations.

• funky-kd: A fairly simple kd-tree implementation with decent speed that
can be used as reference point for speed comparisons. Note, however, that
this kernel is intentionally simple and does not include the surface area
heuristic.

Numerical precision. It turned out to be quite hard to produce the same av-
erage image intensity using different ray tracing cores. Most differences are due
to different triangle intersection codes or custom ε parameters spread through
the code (like in the original implementation of the Möller-Trumbore test). Ad-
ditionally, an only slightly modified ε for the surface offsets has huge impacts
on the result, and is able to distort the average image intensity in the first 3
digits.

However, with a fixed triangle test, different kernels using different acceler-
ation structures can achieve very similar results.

Similiar performance. With variations from scene to scene, most of our op-
timized codes achieve comparable performance. A very notable case is leo-bvh,
which is a decent implementation of a BVH, with comprehensible code lacking
hardcore optimizations such as SSE and still offering competitive performance
(at the cost of a high peak memory footprint). Can a major speed gain still

6

funky-

bih

funky-

bvh

funky-

kd

holger-
qbvh

jo-

kd

leo-
bvh

qbvh rt-
core

0

1000

2000

3000

4000

5000

6000

m
s

3
.6

5
0
e
+

0
3

2
.3

8
7
e
+

0
3

4
.2

5
9
e
+

0
3

9
.0

6
0
e
+

0
2

5
.0

5
6
e
+

0
3

2
.4

4
4
e
+

0
3

8
.6

8
0
e
+

0
2

4
.6

8
0
e
+

0
2

RTKernel init time

(a) RTkernel init time

funky-

bih

funky-

bvh

funky-

kd

holger-
qbvh

jo-

kd

leo-
bvh

qbvh rt-
core

0

10000

20000

30000

40000

50000

60000

70000

m
s

3
.3

8
8
e
+

0
4

3
.3

6
9
e
+

0
4

4
.2

2
8
e
+

0
4

2
.8

6
9
e
+

0
4

5
.5

7
5
e
+

0
4

3
.0

5
2
e
+

0
4

3
.0

9
9
e
+

0
4

4
.8

2
3
e
+

0
4

Rendering time

(b) Rendering time

funky-

bih

funky-

bvh

funky-

kd

holger-
qbvh

jo-

kd

leo-
bvh

qbvh rt-
core

0

1

2

3

4

5

6

7

8

b
y
te

x1e+7

1
.8

3
3
e
+

0
7

1
.2

7
3
e
+

0
7

5
.9

3
8
e
+

0
7

9
.7

5
2
e
+

0
6

6
.6

3
6
e
+

0
7

3
.2

3
3
e
+

0
7

2
.5

0
2
e
+

0
7

1
.9

1
4
e
+

0
7

Memory allocated after build

(c) Memory allocated after build

funky-

bih

funky-

bvh

funky-

kd

holger-
qbvh

jo-

kd

leo-
bvh

qbvh rt-
core

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

b
y
te

x1e+8

4
.4

4
4
e
+

0
7

7
.2

0
9
e
+

0
7

1
.0

2
7
e
+

0
8

1
.1

8
5
e
+

0
7

6
.6

3
7
e
+

0
7

1
.1

0
6
e
+

0
8

5
.6

6
2
e
+

0
7

2
.7

6
5
e
+

0
7

Peak memory allocated

(d) Peak memory allocation

Figure 2: Additional statistics for the conference room scene.

be expected or will the only achievable advances be found in the area of mem-
ory consumption (see the exceptionally good performance of holger-qbvh at low
memory footprint)? Please note that the source code for both of these kernels
is not included in the bwfirt source code package.

5 Conclusion

bwfirt is an approach to a ray tracing benchmark for path tracing based algo-
rithms. It can be used to compare ray tracing algorithms by different researchers
quite easily with regard to single rays and we hope some people actually use it
to give comparable numbers.

We want to hear from you! A final conclusion can only be drawn when
several ray tracing kernels have been tested using this framework. So if you have
a kernel which you believe is doing well, we hope you will try the benchmark
on it and let us know the results.

6 Acknowledgments

bwfirt has been funded by the project information at your fingertips - Interak-
tive Visualisierung für Gigapixel Displays, Forschungsverbund im Rahmen des

7

Förderprogramms Informationstechnik in Baden-Württemberg (BW-FIT).

References

[MN98] M. Matsumoto and T. Nishimura. Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number gen-
erator. ACM Trans. Model. Comput. Simul., 8(1):3–30, 1998.

[SJ00] B. Smits and H. Jensen. Global illumination test scenes. Technical
Report UUCS-00-013, University of Utah, 2000.

[Vea97] E. Veach. Robust Monte Carlo Methods for Light Transport Simu-
lation. PhD thesis, Stanford University, 1997.

[Wäc07] C. Wächter. Quasi-Monte Carlo Light Transport Simulation by
Efficient Ray Tracing. PhD thesis, Ulm University, 2007.

[WMG+07] I. Wald, W. Mark, J. Günther, S. Boulos, T. Ize, W. Hunt,
S. Parker, and P. Shirley. State of the Art in Ray Tracing Ani-
mated Scenes. In Eurographics 2007 State of the Art Reports, 2007.

8

	Introduction
	Related Work
	Requirements for Realistic Image Synthesis
	bwfirt - A Simple Ray Tracing Benchmark
	Implementing the Ray Tracing Interface
	Memory Allocation
	Compiling and Running bwfirt
	Some Results and Observations

	Conclusion
	Acknowledgments

