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Abstract Low discrepancy sequences, which are based on radical inversion, expose
an intrinsic stratification. New algorithms are presented to efficiently enumerate the
points of the Halton and (t,s)-sequences per stratum. This allows for consistent and
adaptive integro-approximation as for example in image synthesis.

1 Introduction

Similar to real world digital cameras, pixel colors can be modeled as sensor re-
sponse to the radiance function. The discrete, pixel-based image thus results from
projecting the radiance function onto a regular lattice of sensor functions.

These functionals can be computed by applying the Monte Carlo method on a per
pixel basis, which allows one to adaptively choose the number of samples per pixel.
The straightforward application of quasi-Monte Carlo methods per pixel in order to
improve convergence reveals correlation artifacts, which can be removed by giving
up determinism, for example by random scrambling [12, 15].

These issues can be avoided by interpreting image synthesis as a parametric inte-
gration problem, i.e. by estimating multiple functionals using a single quasi-Monte
Carlo point sequence over the whole image plane: In [10] the stratification proper-
ties of the (finite) Hammersley point set have been used to efficiently map pixels
to samples. This approach has been generalized for the Halton sequence in order to
allow for pixel adaptive sampling [11]: As illustrated in Figure 1, a large table of
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Fig. 1 A plot of the first 12 points of the scaled two-dimensional Halton sequence (2Φ2(i),3Φ3(i))
labeled with their index i. While the point sequence jumps across the domain, it can be seen that
points inside each of the depicted 2×3 strata can be enumerated using a stride of 6, which is the
number of strata.

the size of the number of pixels has been used to look up the index of the first Hal-
ton sequence point in a pixel, while the subsequent samples have been enumerated
using a fixed stride.

In the following we improve these approaches for low discrepancy sequences,
whose intrinsic stratification is based on radical inversion: Algorithms, which only
require a lookup table size linear in dimension, are derived for the Halton and (t,s)-
sequences.

The results are applied to image synthesis, where by using the first two dimen-
sions of the Sobol’ sequence for parametric quasi-Monte Carlo integration over the
whole image plane the good uniformity properties across pixels are maintained.
In particular, the consistent and deterministic framework allows one to adaptively
determine the number of samples per pixel according to an arbitrary density as il-
lustrated in Figure 4.

2 Radical Inversion and Stratification

Many low discrepancy sequences are based on the principle of radical inversion

Φb : N0 → Q∩ [0,1)

i =
∞

∑
k=0

ak(i)bk 7→
∞

∑
k=0

ak(i)b−k−1, (1)

where ak(i) denotes the (k+ 1)st digit of the integer i ∈ N0 in base b. In fact, the
radical inverse (also known as van der Corput sequence [2, 13]) mirrors the digits
at the decimal point. Using permutations σb (ak(i)) of {0, . . . ,b−1} instead of the
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original digits can improve discrepancy [5, 10]. Note that this generalization as well
as the original construction are bijections.

Inserting i = bd ·h+ l with l ∈ {0, . . . ,bd−1} yields

Φb(i) = Φb(bd ·h+ l) = b−d ·Φb(h)+Φb(l), (2)

revealing that

• the d least significant digits l select an interval bd ·Φb(l) ∈ {0, . . . ,bd−1}, while
• the most significant digits h determine the point inside that interval.

Therefore any subsequence of the van der Corput sequence at a step size of bd falls
into the same interval of width b−d .

3 Enumerating the Halton Sequence per Stratum

The s-dimensional points

xi :=
(
Φb1(i),Φb2(i), . . . ,Φbs(i)

)
∈ [0,1)s

constitute the Halton sequence [7], where typically b j is the j-th prime number,
although for low discrepancy it is sufficient that the b j are relatively prime.

As illustrated in Figure 1, the stratification properties of radical inversion (2) al-
lude to an s-dimensional stratification, where each dimension 1≤ j≤ s is partitioned
into b

d j
j uniform intervals for fixed d j ∈ N0. Now, given coordinates (p1, . . . , ps) of

such a resulting interval, where 0≤ p j < b
d j
j , the indices

l j := Φ
−1
b j

 p j

b
d j
j

 ∈ {0, . . . ,bd j
j }

uniquely identify an index i ∈ {0, . . . ,∏s
j=1 b

d j
j −1} specified by

l j ≡ i mod b
d j
j , (3)

because the bases b1, . . . ,bs have been chosen relatively prime. Consequently the
prime powers b

d j
j are relatively prime as well and therefore the simultaneous so-

lution of the Equations (3) is provided by the Chinese remainder theorem [1,
Sec. 31.5].

With m j :=
(

∏
s
k=1 bdk

k

)
/b

d j
j and the multiplicative inverse

(
m−1

j mod b
d j
j

)
the

index

i =

(
s

∑
j=1

l j ·m j

(
m−1

j mod b
d j
j

))
mod

s

∏
j=1

b
d j
j (4)
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Fig. 2 All kinds of elementary intervals with area 1

16 for s= b= 2. In this case the set of elementary
intervals in the middle consists of square strata. The first 24 = 16 points of Sobol’s (0,2)-sequence,
which form a (0,4,2)-net in base b = 2, are superimposed over each set of elementary intervals.

can be computed efficiently by means of the extended Euclidean algorithm [1,
Sec. 31.2]. Immediate consequences are that

1. the first ∏
s
j=1 b

d j
j points are stratified such that there is exactly one point in each

stratum and that
2. all Halton sequence points with indices i+ t ·∏s

j=1 b
d j
j , t ∈ N0, fall into the same

stratum.

Storing a lookup table for the offsets i per stratum [11] is simple, however, the
size ∏

s
j=1 b

d j
j of the lookup table can be prohibitive even in s = 2 dimensions. It

is much more efficient to compute the subsequence offset i by Equation (4) for a
selected stratum, because only s multiplicative inverses need to be stored once.

4 Enumerating Digital (t,s)-Sequences per Elementary Interval

Opposite to Halton’s construction, the components

x( j)
i =

 b−1

b−2

...


T C( j)

 a0(i)
a1(i)

...


 ∈ [0,1), (5)

of digital (t,s)-sequences [13] are all generated in the same base b, while the matrix-
vector multiplication takes place in a finite field. For finite fields other than Zb, the
digits need to be mapped to the finite field and the resulting vector needs to be
mapped back [13], which has been omitted for the sake of clarity. Equation (1) is an
illustrative example, where the generator matrix C( j) is the infinite unit matrix.

The stratification properties resulting from such a construction are illustrated in
Figure 2 and are formalized by

Definition 1 (see [13, p. 48]). An interval of the form

E(p1, . . . , ps) :=
s

∏
j=1

[
p jb−d j ,(p j +1)b−d j

)
⊆ [0,1)s
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for 0≤ p j < bd j and integers d j ≥ 0 is called an elementary interval in base b.

Given the numbers d j of digits that determine the number of intervals bd j in
dimension j and the elementary interval E(p1, . . . , ps), we have


C(1)
[(1,1),(d1,∑

s
j=1 d j+e)]

...
C(s)
[(1,1),(ds,∑

s
j=1 d j+e)]

 ·


a0(i)
...

a∑
s
j=1 d j−1(i)
a0(q)

...
ae−1(q)


=



ad1−1(p1)
...

a0(p1)
...

ads−1(ps)
...

a0(ps)


(6)

for the (q+ 1)st point in that elementary interval, where q constitutes the e most
significant digits of the index i of that point and the shorthand

C( j)
[(u,v),(u′,v′)] :=

c( j)
u,v c( j)

u,v+1 . . . c( j)
u,v′

...
...

. . .
...

c( j)
u′,v c( j)

u′,v+1 . . . c( j)
u′,v′

is used to select a block from the first d j rows of C( j). As a0(q), . . . ,ae−1(q) are
specified by q, rearranging yields

C(1)
[(1,1),(d1,∑

s
j=1 d j)]

...
C(s)
[(1,1),(ds,∑

s
j=1 d j)]


︸ ︷︷ ︸

A

·

 a0(i)
...

a∑
s
j=1 d j−1(i)



=



ad1−1(p1)
...

a0(p1)
...

ads−1(ps)
...

a0(ps)


−


C(1)
[(1,∑s

j=1 d j+1),(d1,∑
s
j=1 d j+e)]

...
C(s)
[(1,∑s

j=1 d j+1),(ds,∑
s
j=1 d j+e)]

 ·
 a0(q)

...
ae−1(q)

 , (7)

which can be solved uniquely for the index digits a0(i), . . . ,a∑
s
j=1 d j−1(i) if det(A) 6=

0.
Upon existence, the inverse A−1 is computed once and stored for computing the

indices of all samples, which in fact just costs about as much as evaluating an addi-
tional component of the sequence.
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4.1 (0,s)-Sequences

The general definitions of (t,m,s)-nets and (t,s)-sequences in base b are based on
the concept of elementary intervals (for a profound introduction see [13, Ch. 4]):

Definition 2 (see [13, Def. 4.1]). For integers 0 ≤ t ≤ m, a (t,m,s)-net in base b
is a point set of bm points in [0,1)s such that there are exactly bt points in each
elementary interval E with volume bt−m.

Definition 3 (see [13, Def. 4.2]). For an integer t ≥ 0, a sequence x0,x1, . . . of points
in [0,1)s is a (t,s)-sequence in base b if, for all integers k ≥ 0 and m > t, the point
set xkbm , . . . ,x(k+1)bm−1 is a (t,m,s)-net in base b.

According to these definitions, a (0,s)-sequence is a sequence of (0,m,s)-nets as
illustrated in Figure 3. This especially includes (0,ms,s)-nets, where in each hyper-
cube shaped elementary intervals of side length b−m, there is exactly one point.

For the case of digital constructions, as for example the construction by Faure [4],
the generator matrices C( j) of (0,s)-sequences in base b thus yield a unique solution
of Equation (7). Note that (0,s)-sequences can only exist for s≤ b [13, Cor. 4.24, p.
62].

Often integro-approximation problems expose a structure that matches uniform
hypercubes like for example pixels of an image. Out of the elementary interval there-
fore hypercubes with d j = m are most interesting for applications. Enumerating be

points per elementary interval thus results in (bm)s · be = bms+e points requiring
ms+ e digits in total.

4.2 Sobol’ Sequence

As opposed to Faure’s construction, Sobol’s construction [16] is restricted to base
b = 2, which allows for t = 0 only up to s = 2 dimensions. However, the restriction
to base b = 2 enables the use of efficient bit-vector operations [18, 6], which is not
possible for b > 2.

The sequence can be constructed for any dimension and in fact each component
is a (0,1)-sequence in base 2 itself. A description of how to compute the binary
generator matrices can be found in [8, 9].

In addition, the first two components form a (0,2)-sequence in base 2 (for an
efficient implementation see [12]). As a consequence the first 22m two-dimensional
points are stratified such that there is exactly one point in each voxel of a 2m× 2m

regular grid over [0,1)2 as illustrated in Figure 3.
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Fig. 3 Since the Sobol’ sequence is a (0,2)-sequence, each block of points xk·28 , . . . ,x(k+1)28−1
constitutes a (0,8,2)-net in base 2 for k≥ 0. Consequently exactly one sample falls into each of the
16×16 pixels shown here. When the four consecutive sample blocks shown here are superimposed,
there are four samples in each pixel. Our algorithm allows for directly enumerating these samples
based on the pixel-coordinates. Note that while in this two-dimensional projection of the Sobol’
sequence there are clearly some very regular patterns, the sequence is highly uniformly distributed
when more dimensions are considered.

5 Consistent Image Synthesis

Partitioning the unit cube into uniform, axis-aligned intervals results in a number of
strata that is exponential in the dimension s. Hence an implementation requires spe-
cial attention in order to avoid overflows in standard integer arithmetic. We therefore
provide illustrative source code [17] in the Python programming language, which
transparently handles arbitrarily long integers.

In practice, the enumeration algorithms for both the Halton sequence and the
(t,s)-sequences are useful only in small dimensions, as for example computing the
average color of pixels for image synthesis. For that purpose the numbers d j of digits

are chosen such that the resulting numbers b
d j
j or bd j , respectively, of strata are larger

or equal to the number of pixels along each dimension. While square pixels directly
match the square elementary intervals of (0,2m,2)-nets from (0,2)-sequences (see
Figure 3), the components of the Halton sequence need to be scaled individually per
dimension [11] as illustrated in Figure 1.

Similar to [11], the entire image plane now can be sampled using only one quasi-
Monte Carlo sequence, while still being able to control the sampling rate per pixel.
Aside from the first two dimensions, further components are used for sampling the
remaining dimensions of the integrand. This includes depth of field, area light sam-
pling, BSDF sampling, etc. [15]. Therefore the quasi-Monte Carlo sequence needs
to be extensible in the dimension like for example the Halton or Sobol’ sequence.
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In contrast to [11, 3] sampling per pixel is not terminated by an error threshold.
Instead pixel-adaptive sampling is realized by determining a number of samples
per pixel based on an error estimate, sampling each pixel according to that speed,
and repeating this procedure, which results in a consistent integro-approximation
algorithm as illustrated in Figure 4. In particular, this progressive algorithm enables
strictly deterministic pixel-adaptive sampling in parallel computing environments at
the cost of storing only the current number of samples per pixel.

In addition and at any point of the progressive computation a user can define pixel
regions of high importance. More samples will be placed in those regions. Even with
this user interaction, the determinism is not lost, i.e. if the image is accumulated up
to a certain number of samples for all pixels afterwards, the user interaction does
not change the result.

Fig. 4 On the left, 5 samples (depicted by filled circles) have been generated in each of the 9×7
pixels. Note that both the sample distributions inside each of the pixels and also across pixels
is very uniform (in fact of low discrepancy). On the right, samples (depicted by stroked circles)
have been added according to the underlying density proportional to the intensity level of a pixel,
depicted by its gray coloring. Note that these additional samples naturally fill the remaining space.
The overall distribution globally remains well distributed although additional samples have been
added locally.

5.1 Enumerating the Sobol’ Sequence in Pixels

The Sobol’ sequence can be enumerated much more efficiently, if whole (0,2m,2)-
nets (see Figure 3) are generated instead of single points. In order to explain the
optimization, the index

i =
∞

∑
l=0

al(i) ·2l =
∞

∑
l=2m

al(i) ·2l +
2m−1

∑
l=m

al(i) ·2l

︸ ︷︷ ︸
MSB

+
m−1

∑
l=0

al(i) ·2l

︸ ︷︷ ︸
LSB
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is partitioned into three parts: The m least significant bits (LSB), the m most signif-
icant bits, and the remaining bits.

Now the points can be determined as follows: For each component (5) of each
(0,2m,2)-net, two tables with 2m entries each are computed: The first table stores
the results of the matrix-vector multiplications for 0≤ i≤ 2m−1, while the second
stores the results for i = k · 2m for 0 ≤ k ≤ 2m− 1. A component for an arbitrary
value of i then is found by looking up the entry from the first table using the LSB
of i, looking up the entry from the second table using the MSB of i, and the result
of the matrix-vector multiplication using the remaining bits, all combined using
an exclusive-or operation. As compared to evaluating Equation (5) for each single
component, the lookup tables save a lot of operations and can be considered an
extension of the initial ideas in [11, Sec.2.1].

Before applying this optimization to efficiently determine the index i of each
point of a (0,2m,2)-net of the Sobol’s sequence (see Figure 3), the solution of Equa-
tion 6 for the first two components needs to be established:

Given integer pixel coordinates (p1, p2), with 0 ≤ p1, p2 < 2m, the m least sig-
nificant bits a0(i), . . . ,am−1(i) of the index i are determined by applying the inverse
of C(1) to the bits of p1. Then the bits of p2 are combined with C(2) multiplied by
the just computed least significant bits using an exclusive-or operation. Applying
the inverse of C(2) to the result yields the most significant bits am(i), . . . ,a2m−1(i) of
the index i.

By Sobol’s construction, C(1) is a unit matrix, while C(2) is not, which is the
reason for correcting the bits of p2 by subtracting the contribution of the least sig-
nificant bits to the most significant bits.

The optimization now consists in replacing all matrix-vector multiplications by
table lookups. This requires to compute the lookup tables of size 2m for each of the
(0,2m,2)-nets.

The resulting implementation [17] in fact is very simple. Note that special care
has to be taken in order to avoid overflows due to insufficient word width.

6 Conclusion

We derived efficient algorithms to enumerate low discrepancy sequences in elemen-
tary intervals resulting from radical inversion. These algorithms can be used for
consistent deterministic parallel quasi-Monte Carlo integro-approximation.

Instead of considering all elementary intervals, it is interesting to restrict ob-
servations to (M ,µ)-uniform point sets as introduced in [14], which includes the
interesting question, whether rank-1 lattice sequences can be efficiently enumerated
inside the sets of M [11].
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